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Abstract

In the study of time-dependent waves, it is computationally expensive
to solve a problem in which high frequencies (shortwaves, with wavenum-
ber k = kmax) and low frequencies (longwaves, near k = kmin) mix. Con-
sider a problem in which low frequencies scatter off a sharp impurity. The
impurity generates high frequencies which propagate and spread through-
out the computational domain, while the domain must be large enough
to contain several longwaves. Conventional spectral methods have com-
putational cost proportional to O(kmax/kmin 10g(kmax/Ekmin))-

We present here a multiscale algorithm (implemented for the Schrédinger
equation, but generally applicable) which solves the problem with cost
(in space and time) O(kmaxL10g(kmax/kmin) log(kmaxL)). Here, L is the
width of the region in which the algorithm resolves all frequencies, and is
independent of kmin-

1 Introduction and Definitions
Consider the time dependent Schrédinger equation with (z,£) € RN*L:
0 (x,t) = [—(1/2)A + V(x)] ¥(x, t) (1.1a)
P(z,t =0) =o(z) (1.1b)

In this work we restrict ourselves to the case N = 1, although there is nothing
intrinsic to our method which requires this.

Suppose that for the chosen initial data, 1(k,t) remains localized between
the frequencies kpmin and kmax (With kmin < kmax), apart from some small error.

To solve this numerically, one typically truncates the domain to a finite
region (the interaction region) and imposes some sort of open boundary con-
ditions. The natural question to ask at this point is “what is the interaction
region?”

Assume V(z) is supported near x = 0. Waves have an interaction length
proportional to their wavelength, implying that waves with wavelength A =
27 /k interact with V(z) over a distance O(\) = O(k~1). Thus, if frequencies
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are bounded below by knin, the interaction region has width at least O(k;liln).
Accurate resolution of high frequency waves requires at least two samples per
period of the highest frequency kpax, or a sampling rate O(kpax). The number
of samples is O(kmax/kmin) (sampling rate times box width). In phase space

terms, the solution is being computed on the region

(CCHE R TN (12)

min
and the number of samples required is proportional to the phase space volume
of this region.

However, high frequency waves (with, e.g. k = kyax/2) do not interact with
the potential past = O(k™!). So the interaction region in phase space is:

T ={(z,k): [k| <O/ |x[,[k] < Fmax}- (1.3)

Assuming 1/3(1@, t) contains little mass in [—kmin, kmin], We can truncate at = =
O(k 1 ). This truncated region has volume O(kmax log(k_ 1)) rather than
O(kmaxkr;iln), which is asymptotically smaller (the constant of proportionality
is proportional to C'/? and has units of length). This observation suggests that
ordinary spectral methods are inefficient for studying interactions, and that
more efficient numerical methods are possible.

In this work we present an algorithm exploiting this with spectral accu-
racy. The computational complexity is O(Lkmax l0g(kmax/kmin) log(Lkmax)) per
timestep, rather than O(kmax/kmin) for normal spectral methods. Additionally,
being a Fourier-based spectral method, it can be easily modified to treat other
wave equations. Here, L is chosen so that the high frequency components of 7
are entirely contained [—L, L] (i.e. if (x, kmax/2) € Z, then x € [-L, L]). Note
that L is independent of kpin (though it increases with the size of V(z)).

The method presented here can be applied to slowly decaying potentials,
requiring only that V(z) is smooth and |V (z)| < C/(z)?. This rate of decay is
the slowest decay rate preserving the shape of Z.

1.1 Heuristics and Intuition

In this section, we heuristically explain our decay conditions on V' (z). In partic-
ular, we sketch an argument why |V (x)| < C/(x)? allows the interaction region
to take the form (1.3), but C' now varies depending on the potential (rather
than simply Heisenberg localization). We roughly follow the construction of the
half-wave parametrix found in [25], and assume V' (z) is smooth and decays at
the rate |V (z)| < C/(x)2.

To begin, let ¢(x, k) solve the (classical) Hamilton-Jacobi equation

2 100w,y ) + V() = LR+ V() (1.42)

O P(x,y, k) = k when z =y (1.4b)



The solution to (1.4a) is not single valued everywhere, though it is single valued
on outgoing trajectories. We then let go(t, x,y, k) solve the classical transport
equation (valid only where ¢(x,y, k) is single valued):

3t¢10 - kamqo + [azv(x)] aqu (14C)

QO(xvyak) :I(Iayvk) (14d)

with I(z,y, k) a smooth function supported in a small neighborhood (a Heisen-
berg cell) around (z,y, k) = (x0, zo, ko). Subject to these conditions, it is shown
in [25, Chapter 4] that:

eH (2, y, k) — /ei[¢(m,y,k)+t(k2+v(y))]qo(t,x,y,k)dk:

=0V (z)) =0 (k213;2> (1.5)

The key to making sense of this is the observation that the characteristics
of the Transport equation (1.4c) are the classical trajectories associated to the
classical Hamiltonian (1/2)p?+V (x). Thus, e*#? moves electrons along classical
trajectories, ignoring quantum effects.

It is easily seen that a classical trajectory beginning at (xg, ko) is outgoing if
k3/2 > C/{xo)? > |V (x0)| and kozo > 0 (the momentum is pointed away from
the origin). In one dimension, we can simply compute the phase function:

d(x,y, k) = /w VE2+2V(y) — 2V (2)da'

Since k > C/(xo), and |V (y) — V(a')| < C/(x0)? (for different C), we find the
term under the square root is always positive, and therefore single valued.

Thus, trajectories originating in the set {(xo, ko) : |ko| > C/{x0), zoko > 0}
are outgoing, and it therefore makes sense to filter waves from this region.
Provided we consider waves well within this region (i.e. make C' sufficiently
large), quantum effects can not spread the outgoing trajectories too much.

This argument fails for (zg,ko) in Z. In this region, ¢(x,y, k) becomes
multivalued and non-simple. This is the region we wish to resolve numerically. If
V (x) decays more quickly than O(z~2) we make no gain because even though the
potential is not spread out, low frequency waves are and therefore the interaction
region still looks like (1.3).

If V(x) decays more slowly than O(x~2), the shape of Z changes. For in-
stance, if |V (z)] < C/(z), then Z = {(z,k) : |k| < C/{z)'/?}. We believe that
our method can be extended to such cases, but neglect this to keep things simple
(see also Section 2.3).

If k is restricted to the interval [kmin, kmax], the volume of Z behaves like
O(kmax log(k;iln)) as kmin — 0. As remarked earlier, covering Z with a single
rectangle (as is done in typical spectral methods), requires solving the problem
on a region with volume O(kmax/kmin). This volume is much larger than the
interaction region, and wastes computation time and space.



The algorithm we construct here involves covering Zj, .. k... With phase
space rectangles of the form [—2™L,2™L] X [—27™kmax, 27 " kmax). More pre-
cisely, on the region [—27"™L, 2™ L], we do calculations on a lattice with lattice
spacing 27/(27™kmax) allowing the accurate resolution of frequencies up to
27 ™kmax- This allows the computational volume to behave asymptotically like
the interaction region (up to a constant). See Figure 1 for an illustration.

The number L is chosen large enough so that waves with frequency greater
than 27 k,,.x are outgoing by the time they reach z = 2™ L /2. In practice, we
generally want the kinetic energy to be at least 5—10 times the potential energy
by the time we filter. For |V (z)| < Vox 2, this requires (kmax/2)%/2 > VoL ™2
or L > kil \/8Vy/5 (see Figure 2 which illustrates this criteria). This will
ensure that the phase space filters remove primarily outgoing waves. For the
interior propagator to work, we also require that Lkma = O(In(6; ")) with &
a desired error (this ignores logarithmic prefactors; see (2.1c) for the details).
Last but not least, L must be sufficiently large so that [—L/2, L/2] encompasses
the region of interest, i.e. the region where we wish to resolve all frequencies.

Remark 1.1 In spite of many attempts, (1.4) makes a poor basis for a numeri-
cal method except in the limit ¥ — oo (see, e.g. [5]). The reason for this is that
when ¢(z, y, k) becomes multivalued, most techniques break down. As far as the
authors are aware, no numerical scheme performs better than operator splitting
spectral methods in regions of phase space with complicated interactions.

1.2 The Interior Solver

The interior solver is based on the split step method. In the usual split step
method, the approximation

t/5t
e—i(—(1/2)A+V(w))t ~ ei(l/2)A6t/2 1/_[ e—iV(w)tei(1/2)A5t e—i(l/2)A6t/2 (16)
j=0
is used. The operator e#(1/2)Adt
wavefunction (using the FFT, or Fast Fourier Transform), multiplying by e
and inverse Fourier transforming. Of course, the standard Fourier transform is
based on localizing ¢ (x,t) in a rectangular region of phase space.

Our interior propagator is similarly based on (1.6), but the frequency domain
operators are computed differently. Instead of using a single rectangular region
of phase space, we cover the interaction region by a union of rectangles (c.f.
Figure 1). That is, we take a region [—L, L] and use sample spacing dx to repre-
sent the region [— L, L] X [—kmax, kmax] in phase space. We simultaneously study
the regions [—2" L, 2™ L] X [—27™kmax, 2~ " kmax| with lattice spacing 2™dx. To
deal with the non-uniform sampling in z, we decompose the wavefunction into
a sum of pieces, each of which is uniformly sampled and localized in a single
rectangle in phase space. We then use ordinary spectral methods to apply the
frequency domain operators to these pieces, and reconstruct the wavefunction
by (spectrally accurate) interpolation afterward.

is approximated by Fourier tlransforming2 the
ik? /25t



Like the regular FFT, our algorithm achieves spectral convergence. By spec-
tral convergence, we mean that the all the error comes from parts of the wave-
function located outside the region of phase space we are considering. We pro-
vide a rigorous proof of it’s accuracy! in Appendix A. Combining this algorithm
with standard operator splitting yields a method comparable to normal spec-
tral methods. The complexity of the algorithm is O(M kmax L log(kmax L)), with
M = O(log(k,\.)) the number of dyadic scales needed.

The dominant part of the error comes from low frequencies, for which k= is
too large to resolve even on the coarsest grid (having width 2M2L). However,
“finite” propagation speed? combined with virial identities suggest problems
associated to low frequencies will take an exponentially long time (in the number
of scales M) to appear; see Section 2.2.

The approach given in this paper is specialized to the case where the wave
operator is —(1/2)A, or w(k) = (1/2)k? in 1 space dimension, though general-
izations are straightforward. Provided operator splitting is valid, the method
described here can be used. Of course, the rate of downscaling must be sufficient
to completely capture the interaction region (see Section 2.3).

1.3 Phase Space Filters for Outgoing Waves

It should be noted that waves will almost always propagate outside the inter-
action region; we are just uninterested in them because their behavior is well
understood. We must therefore come up with a means of removing the outgoing
waves before they introduce errors into the numerical solution. This is in sharp
contrast to parabolic equations, where the dynamics of the equation dissipates
high frequencies (which is the basis for multigrid techniques).

Since the computational boundary is defined in phase space rather than
simply position, all the usual methods of open boundaries [2, 3, 11, 12, 16, 28, 6]
do not apply. Dirichlet-to-Neumann boundary conditions must be imposed at a
particular curve in z. Artificial dissipation [4, 19] terms like complex potentials
or the PML will either fail to dissipate high frequency outgoing waves (if placed
near © = C/kmyin) or will incorrectly dissipate low frequency waves which are
still interacting with the potential (if placed near z = C/kmax)-

The only approach we are aware of which can be generalized to non-rectangular
regions of phase space is the Time Dependent Phase Space Filter (TDPSF)
[24]. The TDPSF algorithm (in one dimension, on a rectangular region of phase
space) is as follows.

First, we solve (1.1) on the finite region [— L, L]. Inside the regions [~ L, —L/2]
and [L/2, L], we periodically in time apply a phase space filter (with period
Tytep). We decompose ¥(x, nTstep) = Yout(x) + Yr(x). The piece Yous(z) is
strictly outgoing, being localized on the region [L/2, L] X [kmin, kmax] in phase

1We neglect floating point errors, and all errors associated to the FFT besides aliasing in
z and k. These are small in practice, so we believe this is reasonable to do.

2The Schrédinger equation does not have finite propagation speed. However, if frequencies
are bounded above by kmax, then velocities are bounded by kmax as well.
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Figure 1: A schematic illustration of the phase space regions where different
algorithms work. The arrows indicate the direction of the flow.
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Filter Regions in Phase Space
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Figure 2: The regions of phase space where the filter acts (with 3 scales). The
arrows indicate the amplitude and direction of motion. The region of phase
space in which waves interact with the potential is marked. Regions of phase
space with k < 0 correspond to incoming waves, and should not be filtered.

space. The remainder consists of waves located inside the region [—L/2, L/2],
as well as low frequency waves which may be located in [-L, —L/2]U[L/2, L].

Here, “low frequencies” refers to frequencies smaller than kyi, = O((L/2)71).
Since our filtering region has width (in position) L/2, we can localize in fre-
quency no better than O((L/2)~1).

For our problem, with a non-rectangular region of phase space, we wish to
do the following instead. We will filter off waves in the region [2"™L/2,2™L] x
27 kmax/2, 27 " kmax] for m = 1... M (for some integer M). Figure 2 diagrams
the interaction region, filter regions and lattice spacing used.

1.4 The Main Algorithm

The general framework of the Multiscale TDPSF propagation algorithm can now
be described in general terms; the specific details of the internal propagator and
outgoing wave filter will be treated in Sections 2 and 3 respectively.



Algorithm 1 (Multiscale TDPSF Propagation Algorithm)
Fiz an initial condition o(z), and a number of scales M. Set n = 0.

1. For times t € [nTyep, (n + 1)Tyep), solve ¥(x,t) on the finite domain
using operator splitting. The frequency domain operator is approximated
by Algorithm 5 (see Section 2).

2. When t = nTgep, apply phase space filters,replacing ¥ (z,t) by:

M
1— PnOUT
>

The projections are calculated using Algorithm 7 (see Section 3).

¢ (‘Tu nTstep)

3. If nTytep > Tmax then stop, otherwise goto step 1.
The computational complexity of this algorithm is
O(NMTaxlog N) = O(Timaxkmax M 10g kmax)- (1.7)

The parameter N is defined as N = 2L/6x = 2Lkmax /7.
Step 2 has this complexity, since we compute M phase space projection op-
erators, each of which has complexity O(N/4log N) (see Algorithm 7, Section
It is shown in the Section 2 that Step 1 has complexity O(N M Tgeplog N).
Since the loop runs no more than Tmax/Twep times, we obtain the correct asymp-
totic complezity.

1.5 Connections to other fields

It is worth mentioning two important areas that our work relates to. First,
interior solvers similar to ours have been constructed to solve the heat equation
[15] and the equation v—Au = f [14]. The major difference between these
works and ours is that they use the natural decay of the differential operator
(for large k) to suppress high frequencies, while we use filtering. Those works
also use the non-uniform FFT, while we make do with the standard one.

We also remark that similar ideas are used in Coarse Grained Molecular
Dynamics (CGMD) [21, 9, 8]. In CGMD, one wishes to study the dynamics
of individual atoms in a small region of space, which are coupled to large scale
effects (well modelled by continuum equations) elsewhere. The general ideas are
similar to ours, although of course our model is continuous at all levels.

1.6 Disclaimer

The algorithm presented here is intended to be a proof of principle, and is not
intended to be directly competitive with other schemes except when Kpax/kmin
is large. Additionally, the proof of accuracy of the differential propagator used



makes an important assumption that is not strictly true for any real implemen-
tation. We assume that the only errors made by the FF'T are caused by aliasing
in « and k. We neglect errors caused by floating point arithmetic and errors due
to discretizing the integral involved in computing the Fourier transform. Since
aliasing errors are the dominant part of the error in practice, we believe this
assumption is reasonable.

2 Multiscale Calculation of Differential Opera-
tors

In this section, we describe a multiscale spectral propagation algorithm (hence-
forth abbreviated MSP). The MSP uses a non-equispaced grid to a allow the
calculation of the Fourier transform of functions which are appropriately local-
ized in phase space. The crucial fact is that the potential interacts with waves
only on the phase space regions |k| < C/ |x|.

The basic idea of the algorithm is the following. First suppose we want
to apply S(iV) to a function f(z), and suppose f(z) has high frequencies lo-
cated only in the region [—L/2,L/2]. Suppose we compute the Fourier trans-
form of x(z)f(x), with x(z) a smooth partition of unity that is equal to 1 on
[-L/2,L/2]. This Fourier Transform is equivalent to Fourier transforming f(x)
for high frequencies. If we then subtract these high frequencies from f(x), the
result has only low frequencies. But since the new function has low frequencies
only, we can Fourier transform it with a larger sample spacing (and reduced
computational cost) with no loss of accuracy.

The MSP introduced below uses this by first localizing high frequencies on
small regions of space, and then by using ordinary spectral methods to propagate
them. An important technical point is that spectral methods are applied to
different regions of space with different lattice spacing, and interpolation must
be used to recover the low frequencies on regions of space with fine sampling.

2.1 Multiscale Approximation of Differential Operators

We now describe an algorithm for approximating a differential operator S(iV)
applied to smooth functions suitably localized in phase space. In particular, we
assume that for large =, f(x) has no high frequencies remaining.

To begin, define the box By = [—L, L], with L chosen sufficiently large. Let
kmax be a sufficiently large frequency. Both kya.x and L must be large enough
to satisfy (2.1c). In what follows, d; is a small parameter, to be adjusted later
(see Theorem 2.7).

2 22 /o2
Xo(z) = N 17" % 13123104 (%)

= % [erflo™" (z + 3L /4)] — erflo ™ (z — 3L/4)]] (2.1a)



Py(k) = % lerf (0 (k + 3kmax/8)) — erf(0(k — 3kmax/8))] (2.1b)

Serfc(6;) L
——— <0< ———
kmax 8 erfc (61)
Here, x represents convolution. The standard deviation o is chosen so that
xo(z & [~5L/6,5L/6]) < 61 and xo(—4L/6 < x < 4L/6) > 1 — §;. This means
that xo(z) approximates a partition of unity (supported on [—L/2, L/2]), with
error 1. Similarly, Py(k) approximates a partition of unity, equal to 1 on

[—kmax/4, kmax/4] and smaller than d; on [—Emax /2, kmax/2]° .

(2.1c)

Remark 2.1 The function erfc(x) has the following bounds [1, page 297-298]
for x > 0:

2 e < erfe(z) < 2 e (2.2)
——— <erfe(s) < =————— .
Vrx+Va2+2 7 T VT4 /22 +4/m

This implies that erfc™!(d) has the bound (for § < erfe(1) < 0.158):
erfc™(8) < v/In(0=1) +In(7)/2 — In(2) = O(y/In(6-1)) (2.3)

The functions xo(z) and Py(k) are the base projections; we now define the
scaled versions of them:

Xm(z) = x0(27"x) (2.4a)
PL(k) = Py(2™k) (2.4Db)

Before continuing, we formalize our assumption on the phase space localiza-
tion of f(z).

Assumption 1 For all m, f(x) satisfies:

11 = P (k) f () = Xom (€)(1 = P (K)) X (2) f (@) | L2 < S0 (| F(@)l] L2 (2:5)

One should interpret the operator xm(z)(1 — Pm(k))xm(z) as a “projection”
onto the phase space region [—2™L,2™L] X [=27 " kmax/2, 2 ™ kmax/2]¢. The
boundaries are of course fuzzy, due to the vagaries of phase space localization.

Taking the union of these sets for m = 0...00, we find that they are a
covering (using rectangular bozxes) of the hyperbola |k| < C/(x).

We sample the region By with spacing dz = 27/3kmax. This is sufficient to
resolve frequencies no larger than 3kmax/2 (we explain shortly the reason for the
extra spacing). We will then sample the regions B,,+1 \ B, at the rate 2" +16x.
This is sufficient to resolve the frequencies 2™ 'k which may exist in the
region B, 1, with aliasing errors at most e.

We add an additional assumption on the function f(x).

Assumption 2 For all m, S(iV)f(x) satisfies:
1SV )xm (@)(1 = P (k)Xo (2) f ()| L2 (B ) < 02 [ ()] 2 (2.6)

That is to say, S(iV) can not spread waves out too far.
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This assumption is satisfied by S(iV) = e!(1/229¢ for §t sufficiently small, pro-
vided the problem does not have frequencies which are too large. This assump-
tion is also satisfied even for singular propagators such as S(iV) = e**I9,

Remark 2.2 Results very similar to Assumption 2 are proved in detail in
[23, 26] for S(iV) = ¢(1/2A% (in particular, see Section 6). The general
flavor of the result is as follows. Suppose that the mass of ﬁ(k,t) outside
the region [—kmax, kmax] 18 bounded by e. Then for a filter of width w, if
0t < Cwln(d1)/kmax, then 02 is bounded by:

0o < C+/ Lkpax01 + C'e (27)

In fact, the result proved in [23, 26] is more general. That result applies to
N dimensions (replacing /Lkmax by (Lkmax)d/ %), as well as non-differential
propagators: instead of e'(1/229% one can use e =% with H = —(1/2)A+V ()
for V(x) supported (mostly) inside [-L/2, L/2].

We make one further assumption.
Assumption 3 We assume that |S(k)| = 1.

This assumption is not strictly necessary, but it makes the proof simpler. Since
we are interested in wave propagators of the form S(k) = ™" this is a
perfectly reasonable restriction.

We are now prepared to discuss the algorithm. When discussing the com-
putational complexity, let N = 2L/6x = 2Lkmax /7.

Definition 2.3 The operator Fs, is the N-point Fast Fourier transform algo-
rithm operating on the points {—(N/2)éx,—(N/2 + 1)éx,...,(N/2)éx}. The
computational cost is O(N log N). The inverse is denoted by _7-'(;61.

Algorithm 2 (Phase Space Localization) This algorithm decomposes a
function f(x) into components which are well localized in phase space.

1 For m =0, define
fo (@) = x0(@)F5,! (1 = Po(k)) Fsaxo(@) f (@) (2.8a)

fo (@) = f(2) = fi (@) (2.8b)

The cost of using the FFT region By is O(N log N), while multiplication is
O(N). No errors are caused by using the FFT with periodic boundaries due
to the fact that (1 — xo(z)) vanishes near the boundary of By.

Additionally, define fi (k) = 0 for |k| > Emax. This is done to control dis-
cretization errors.

11



2 For m > 1, define:
F (@) = Xom (€) Fam 5, (1 = P (k) Fam o Xom () f 1 () (2.9a)

fn(@) = fra (@) = fil(2) (2.9Db)

While computing the operator (1 — P, (k)), we set (1 — Py, (k)) =0 for |k| >
(2/3)27 ™ kmax to control discretization errors.

8 Return the list of functions [fy (z), fif (@), ..., fi;(@), f1;(2)].

The computational cost of this algorithm is O(MNlog N). This follows
because for m = 0... M, we compute an FFT of a region with N points at
a cost O(Nlog N). In addition, we must compute an FFT of a region with N/2
points at a cost O(N/2log N) = O(N log N).

Remark 2.4 Algorithm 2 will NOT work for an arbitrary function f(z). This
works for f(z) satisfying Assumption 1 simply because the downsampling used
on the coarse grids cannot alias high frequencies which are not present.

Remark 2.5 In steps 1 and 2 of Algorithm 2, we set high frequencies (|k| >
27 ™kmax on each scale) equal to zero. On the level of infinite precision arith-
metic, this appears unnecessary. In a real computer, floating point errors occur
which can cause long time instability of the numerical solution. Oversampling
the grid by a factor of 3/2 and filtering the high frequencies appears to solve this
problem. This works because floating point errors can be assumed to have arbi-
trary frequencies, and we therefore remove (1/3) of them per timestep, whereas
the effect on the true solution is negligible.

We have the following result as far as the accuracy of Algorithm 2, which is
proved in Appendix A.1.

Theorem 2.6 Suppose that f(x) satisfies Assumption 1. Let ff:@ be the dis-
cretization of ff, computed according to Algorithm 2 with M scales. Suppose
further that o, kmax and L satisfy (2.1c). Then:

16Kmax

V2mo
16Fmax

V2mo

This result shows the error is linear in the number of scales, and linear
in knmax. We conjecture that the dependence on knyax could be removed; see
Remark A.5.

Before we continue, we provide an interpolation method which provides spec-
tral accuracy.

IN

/(@) — £59@)]] 51(2m+ )w)m (2.108)

Fa(@) = £ (@)
| |

IN

01 (2M +
L2

) @l (2100)
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Algorithm 3 (Spectral Interpolation) Let f(x) be a function on B, with
lattice spacing 2Md0x. f(x) must also be localized in frequency on the region
[_2imkmaX7 27mkmax] .

Then I, f(x) is a spectral approximation to f(x) on Bpy_1 with lattice spac-
ing 2™~ Y6x. Calculation of T, f(x) is done as follows.

1 Compute the Fast Fourier Transform of xm—1(z)f(x) on By, with lattice spac-
ing 2Mox.

2 Compute the inverse Fast Fourier Transform on B,, with lattice spacing
2m=15z.  Frequencies with |k| > 2 ™kmnax are populated with zeros before
computing this. Discard lattice points outside By,—1. The result is T, f(z).

Since this algorithm is merely an FFT and an inverse FFT (on grids with N
and 2N lattice points, respectively), the computational cost is O(3Nlog N) =
O(Nlog N).

We now describe the propagation algorithm.

Algorithm 4 (Multiscale Spectral Propagator)
1 Compute [f (z), fiH (z), ..., fi;(x), f1;(x)] by means of Algorithm 2.

2 For each m, compute S(k)Faomsg [, as well as S(k)Fomsy fry. This has com-
putational cost O(M N log N).

8 Compute the functions:
031 () = Fyrbs SO Forisa [ + Fiibs SU) Faness Fir (2.11a)
Im-1(2) = Fot 15, S(k) Fom—150f5 1 4 Tn—19m () (2.11b)

The function g, (z) (defined on B,,) approximates

S(k)

M
fa+ > f:] ~ S(k) P f

k=m
on the region By, with lattice spacing 2™dzx.

4 Return the function g(x) given by g(x) = gm(z) for © € By, \ Bm—1.
We have the following result as to the accuracy of Algorithm 4.

Theorem 2.7 Suppose S(k) satisfies Assumptions 2 and 3, and f(x) satisfies
Assumption 1. Suppose also that (2.1¢) holds.

Now let g(x) = go(z) as calculated by Algorithm 4, but using exact Fourier
transforms on R instead of the FFT on truncated regions. Let g%(x) be the
discrete approximation to g(x) (calculated with space and frequency truncation,
but with no integration/floating point error).
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Then we have the following bounds:
[S(k)f (@) = g% (@)]| 2 < ISR f(2) = 9(@)l| 2 + [|9(2) = g% (@)[| . (2.122)
with:
[S(k)f(z) — g(2)ll >
<4

1 (M? +10M? + (55/2 + kmax) M + 225kmax + 18) || f| 12
+2[|Prfll2 (2.12b)

and

16kmax
lg(z) = g*(@)] . < 1 (5M2 + {15+ N

+ 6o M || f(@)]l 2 + 2| Prsfllp2 (2-12¢)

] M+12+ 150kmax>

These two formulas should be interpreted as follows.

Equation (2.12b) is the error caused discarding those parts of the solution
which Assumption 1 says are small. On the coarsest scale, we discard waves
which might be significant even if Assumption 1 is true, causing the presence of
the last term.

Equation (2.12¢) is the error caused by approximating the Fourier transform
by the discrete FF'T algorithm. This is caused both by the fact that our localiza-
tion procedure introduces tails in x and k (the first term in (2.12c)) and the fact
that S(k) spreads waves out beyond the limits of truncation (the second term).
The last term is caused by spatial truncation errors in the lowest frequencies.

We now present the propagation Algorithm for equation (1.1).

Algorithm 5 (Multiscale Schrodinger Solver) Take input vo(x), and fix
0t > 0. This algorithm approzimates v (x,not) for n an integer.

1. Iterate over n = 0..npmax = Tmax/0t.

i Define 1y, i(x) = !0/, (). Calculate this using Algorithm
4.
it Define 1 ii(z) = eV @, i(2).
iii Compute 1y, 11 (x) = 'O/ D8y, (), again using Algorithm 4.

This algorithm has complexity O(nmax NM log N). This can be seen since the
application of Algorithm 4 in steps (i) and (i) have complexity O(NM log N)
while step (ii) has complexity O(NM).

This algorithm provides O(6t3) accuracy (O(6t%) for time-dependent poten-
tials).

This algorithm is merely the standard 2’nd order operator splitting method.
The only difference is that we now use the multiscale propagator to approximate
the ¢?(0t/2)(1/2)A gtep instead of the usual FFT.
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2.2 Interpreting the error bound

The standard spectral propagator, namely flgleikzt}};z is said to be spectrally
convergent for the following reason. Assume f(z) decays exponentially in « and
f(k) decays exponentially in k. Assume that 2! f(z) is localized within [~ L, L]
up to an error of size 6z || f|| 2, where [—L, L] is the computational box. Then the
spectral propagator can be applied to compute ¢! f () with error proportional
to 81 + d2 at computational cost O(N log N), with N = O(log(d;1)).

Let us discuss why Algorithm 4 provides this level of accuracy.

First, observe that the computational complexity is O(M N log N), with N =
Lkmax. Rearranging (2.1c), we obtain the constraint 64(erfc_1(51))2 < Lkmax-
Examining (2.3) shows that erfc™*(6;) = O(y/log(1/6,)) for small §;, which
implies that:

N = Lkmax = O(log(67 1))

This is spectral convergence in N = Lk ax; i.e. the error caused by discretizing
the problem decays exponentially as computational cost increases, provided of
course that the function is localized sufficiently well in phase space (though not
exponentially decaying in = and k, as before).

There are two additional parameters present: M and ||Pasfll;.. As M
increases, we must decrease d; correspondingly, causing only a logarithmic in-
crease in N. d2 depends strongly on S(k), and is analogous to errors caused by
aliasing (waves leaving the right side of the box and entering the left).

The last term is a smooth projection onto waves with frequency k < 2 ML .
This can be bounded if we assume some smoothness of f (k):

2 M /2

~
~—

=y
S~—"

|Pafle < 51/

~ 2 ”
Fo| di+ / |
k|52 M ko /2 oM /2

~ 2
< O3 1113 + 2 Mk | F(8) |

<ENfI22 + 2 MhmaxC [ (@) f(2)])52 (2.13)

i), <

The constant C' comes from the Sobolev embedding theorem?, since ’
LOO

Ve |fw) = VTl@ @l e

For Schrédinger equations, we expect that [[(x)f(z)]| 2 ~ (p)t (see Sec-
tion 2.2.1 below). This means that the error due to low velocities behaves
like O(2‘M/ leln/fx), which yields exponential decay in M. Therefore, we have
spectral convergence in N and M ; linear increases in N = Lk, decrease dq
exponentially, while linear increases in M decrease the error due to low frequen-
cies exponentially. The remaining error is due to the wave propagator moving

waves outside the phase space region of interest, which is present in any spectral
method.

3Note that more work is required in higher dimensions, since H*(R2:3) £ L°(R?:3).
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2.2.1 Why do we expect |[(z)f(z)|/>. to be bounded?

When used to propagate e**! as in Algorithm 5, f(x) will be an approximation
to ¢ (x, ndt) with 1(x, t) solving the Schrodinger equation. For the Schrodinger
equation, the virial theorem says that:

@) (@, t)ll72 < (@)@, 0|22 + £ (@, b3 (2.14)

In physical terms, this is merely the statement that (z) < (xo) + (p)t, with (p)
the expected value of momentum. For other types of wave equations the precise
definition of momentum needs to be changed, but similar identities usually hold.

Moreover, provided ds is small, this provides us with a general idea of how
long a numerical simulation (using Algorithm 1) will remain valid. Using (2.14),
we see that provided 27 /Emax((zo) + (p)t) is small, the error will remain
controlled. This implies that if error € is desired, using

M = O(loge™" +log({zo) + (p)t))

scales will control the error.

In practice, this appears to be an overestimate. Moreover, it suggests that
as we increase M, we can use Algorithm 1 for 0 < ¢t < Thax = O(2M/2). This
behavior is observed in numerical experiments; see Section 5.2 and Figure 6.

2.3 Possible Improvement

Although algorithms 2 and 4 are more efficient than FFT-based spectral meth-
ods for large M, they fail to be competitive for small M (in particular M < 5).
Careful optimization may reduce this, but made no attempt to do this since our
main concern is efficiency as M becomes large.

A more serious problem is that while dyadic downsampling works for V (z) ~
Cx™? (near x = 00), it will not work for V(x) ~ —Z/|z| since the interaction
region is {(z,k) : |k| < C/(z)"/?}. For sufficiently large m, Algorithm 1 will
attempt to filter waves near x = 2™ L,k = 27 kyax. But the energy of these
waves i (27 kmax)? — C/(2™L) < 0, implying that Algorithm 1 will attempt
to filter waves with negative energy. This is a serious problem, stemming from
the fact that the interaction region is larger in this case. For these problems, we
propose using boxes of size B,,, = [-22™ L, 22™ ] each with lattice spacing 2™ dx
(implying that there are O(2™) lattice points per scale instead of a constant
number). Although this is more costly, we believe it will resolve the problem
for the case of Coulomb potentials (and is still cheaper than using a rectangular
phase space region).

3 Phase Space Filtering

3.1 Introduction to Phase Space Filtering

In this section we describe the phase space filtering algorithm which will be
applied. We will apply the phase space filter on a region having size L/4 on
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each side of the grid. This choice is almost certainly not the most efficient, but
it is the simplest. Consider the following algorithm (see [24] for details):

Algorithm 6 (Simplified TDPSF Propagation Algorithm)

Define wr(x) to be zero outside [—-L,—L/2], and to be 1 on some region
inside [-5L/6,—4L/6], and wr(x) = wr(—z). Suppose that wr r(k) is localized
in the frequency band narrower than [—kmax/4, kmax/4] (this is possible provided
L is large enough).

Further, define x+(k) =1 for k € [tkmax/4,100), 0 for k < kmax/8 and

smooth in between.

1. For t € [nTyep, (n + 1)Tytep], solve (1.1) by using the Split Step Fourier
method on [—L,L]. We assume the initial condition is localized in the
region [—L/2, L/2].

2. At times nTpep, replace U(z, nTyep) by:
[1 —wr(z)x-(k)wr(z) — wr(@)X+ (k)wr(2)]¥ (2, n'Ttep)

The operator wy,(z)x—(k)wr(x) is a projection onto rightward moving
waves located to the right of x = L/2, and the wr(x)x+(k)wr(z) is a
similar operator.

The time Tyep is chosen to be (L/4)/kmax, to guarantee that waves with
velocity kmax or slower cannot pass through the region [L/2,3L/4] before
being filtered.

In practice, we simply take wy (z) = X[—L+\/ﬂ,—L/2—\/ﬁ?($) x e~ /2 with
* denoting convolution. This doesn’t quite satisfy the localization condition,
but comes close enough for practical purposes if € is small enough and L is large
enough.

This algorithm is capable of approximating the solution to (1.1) on the
region [—L/2,L/2], provided ¢(x,t) has no outgoing waves with frequency
k < kmax/4. This can be seen for the following reason. A wave with veloc-
ity k € [kmax/4, kmax] can travel from [L/2,3L/4] before being removed by the
application of the operator [1 — w(z)x— (k)wr(z) — wr(x)x+(k)]. Since the
wave never reaches the boundary at x = L, the boundary conditions are irrele-
vant, and periodic boundaries can be used.

This is a simplified version of the Time Dependent Phase Space Filter
(TDPSF) constructed in [23, 26, 24]. The version in [23, 26, 24] is more ef-
ficient in many ways. Most notably the buffer region is taken to have width w
(a parameter independent of L) rather than merely L/2, and can filter waves
with frequency as low as (Ine/w), with e the desired error. In addition, the
approach of [23, 26, 24] works in multiple dimensions, while Algorithm 6 does
not.

However, the critical problem with both the approach of [24, 23, 26] and
Algorithm 6 is that they cannot accurately filter low frequency waves. In fact,
this problem is shared by nearly all methods of open boundaries, including
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absorbing potentials [19], the PML [4] and Dirichlet-to-Neumann boundaries
[10, 3, 2, 28, 27, 22, 17, 16]. The reason for this varies depending on the method.
Dirichlet-to-Neumann boundaries, in all but the simplest (free wave) cases, are
constructed by means of high frequency approximations, and therefore fail for
low frequencies. Absorbing potentials and the PML have problems with reflec-
tion/lack of filtering for small k, analogous to errors made by the TDPSF.

3.2 The Multiscale TDPSF

Instead of increasing the width of the filter, thereby lowering kuin, we simply
downscale the filter so that it covers the edge of the interaction region. That is,
we apply the same filtering procedure (with the details clarified), but addition-
ally using filters with w(27™x) and x4 (2™k) replacing w(x) and x4 (k). With
M scales this allows us to filter outgoing waves with k as low as O(2‘M kmax)-

We now construct the Multiscale TDPSF. Let w4 (z) be a smooth partition
of [£L/2,£L], and let wy ,(x) = wx (27 "x). Similarly, let x+ (k) = x+£(27k).
We define these operators precisely soon. The operator

PnOUT = w+,n($)X+,n(k)w+,n($) + w—,n(x)x—,n(k)w—,n(x) (31)

is then an approximate projection onto outgoing waves. For concreteness, we
fix a tolerance ¢, and define:

wy (@) = (1/2)[erf((z — (L = 1))/V2) + erf((z = (L/2+1))/V2)]  (3.2a)
b=erf ' (e) = O(y/In(e71)) (3.2b)
b< L/12 (3.2¢)

with w_ (z) defined similarly. The constant b is chosen so that w4 (z) < € to the
left of L /2 and to the right of L. For this choice to be reasonable, we require
that L > 2b. The function x4 (z) is given by

X (k) = erfe((k — kmax/2 — b)/2) (3.3a)
b = (3/2) erf L (¢/L) = O(v/In(L/e)) (3.3b)
b < Emax/4 (3.3¢)

This means that x4 (k) > 1 — e when k& > 2b'. This cutoff is chosen so that
even after multiplication by w4 () (which corresponds to convolution in the k
domain) Py f(x) will have no more than e frequency content below k = 0.

The constraints (3.2c¢) and (3.3c) provide the ultimate limits on the error
of the phase space filter method. As e decreases, b and b’ increase, thereby
requiring L and kpax to increase. The number of lattice points required is
N = O(Lkmax) > O(bb') > O(In(e))*.

The operators POUT can be calculated as follows.

40ur analysis actually suggests O(y/In(e=1)2 +In(L)In(e~1)), but the distinction only
matters when the region of interest is extremely large compared to the accuracy desired, e.g.
L > e~1. We believe this dependence is an artifact of our analysis: when studying convolutions

we take absolute values, bounding ’2(L/4 — 2b) sinc((L/4 — 2b)k)e*x2/2 by (L/4—2b)e’””2/2.

This is suboptimal, but good enough for our purposes.
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Algorithm 7 (Phase Space Projections)

Take as input f(x), a function defined on an arbitrarily large domain. This
algorithm computes POUT f(z). Assume that N lattice points are used to sam-
ple the region [—L, L], and that the sampling rate decreases dyadically on later
TeGLONS.

1. Truncate the domain to [-2"L,—2"L/2]U [2"L/2,2"L].

2. Compute w4 pn(x)f(x) on [-2"L,—2"L/2] only, and w_ ,(x)f(x) on
[2"L/2,2"L] only.

3. Take the FFT of wy n(x)f(x), and multiply by x+ n(k). Note that the
FFET of each region is done separately.

4. Invert the FFT and multiply the result by w ,(x). This yields [PCUT f](x)
for z € [~2"L,—2"L/2] U[2"L,2"L/2).

5. For all other , approzimate PPUT f(x) by 0.

The computational complexity of this algorithm is O(N log N), which can be
seen simply by noting that the FFT has this complexity. All other steps are
O(N) or O(1).

The number of lattice points in Algorithm 7 is only N/4 because the region
[2"L/2,2"L] is sampled with sample spacing 2"z rather than simply dz.

We are implicitly assuming that the maximal frequency found in [2"L/2, 2™ L]
is 27" kmax rather than kn.x. This assumption actually holds because waves
with frequency larger than 27" knax are filtered before they can reach the n’th
layer.

3.3 Accuracy of the Filtering Algorithm

In [23, 26], it is proven rigorously that if V(z) =~ 0 in the filter region, Al-
gorithm 6 is accurate®. We show that if the solution ¢ (z,t) has frequencies
bounded between K and kmax and if V(z) is well localized, a phase space filter
of width O(In(e)/K) will provide accuracy of order O(Timaxe) (ignoring loga-
rithmic prefactors). In [24, 23, 26], K is taken to be kmyin, while in this work
we take K = kpax/2 (leaving low frequencies to be filtered by the downscaled
filters). These error bounds are proven only for rapidly decaying V(x). Proving
accuracy for slowly decaying V' (z) is more difficult, and involves showing that
POUT projects accurately onto outgoing waves of —(1/2)A + V(z) (a nontrivial
problem of scattering theory).

To demonstrate the accuracy of a single phase space filter, we solved (1.1)
using Algorithm 6. The initial condition was g (z) = etk e=2/249 The compu-
tational region was x € [—51.2,51.2] and k € [—31.4, 31.4] (1024 lattice points),
and Tphax was taken to be 4L/k (enough time for waves to wrap around the box

5We actually prove the result for a variant of Algorithm 6 which extends to multiple
dimensions.
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Figure 3. A graph of error ([, 1) ~ (e, )l g0y /10 (@)l 2) vs fre-
quency of an outgoing pulse for the phase space filtering algorithm.

twice). A phase space filter with varying €, but fixed L and kpax, was used to
remove outgoing waves. Waves with frequency k > 13 are accurately filtered,
while low frequency waves are not. The results are plotted in Figure 3.

4 Justification of the Method

We discuss briefly why Algorithm 1 works.

Begin by assuming that ¢ (z,0) = ¢¥r(x) + ¥p +(z) + Y5 — (), where ¥ (z)
is localized on [—L/2, L/2], v¥p +(x) is localized on [L/2, L] and has frequencies
primarily k& > kmnax/2, and ¢ _(x) is localized on [L/2, L] and has frequencies
primarily on k < kpax/2. (For simplicity, we consider waves on the right side
only, the left being treated identically.)

The component 1y (z) can be propagated safely for at least a time Tyep =
L/4kmax. This follows since the maximal velocity is kmax, and it would take a
time 2T4cp for ¢ (x) to cross the buffer region.

The function ¥p _(z) can be propagated safely as well, at least for time
L/(kmax/2) = 8Tstep. This is the time it takes for waves with velocity kmax/2
to cross a region of width L. The region in question is the low frequency buffer
that is added to the edge of the grid (the second scale).

Finally, ) +(x) can not be propagated safely, since it consists of high fre-
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quency waves which are about to enter the second scale; however, the first filter
removes g 4+ (x) before it enters the second scale and corrupts the solution.

The same argument can be repeated for arbitrarily many scales, until 27" kpax <
kmin- Thus we see that if ki, is known, we can solve the problem using
m = O(log(kmax/kmin)) scales.

4.1 What if k,;, is unknown?

In the event that ki, is unknown, we can still solve the problem if 71, is known
and finite. Suppose we have M scales. Then outgoing waves with frequencies in
the range [27M kmax, kmax] can be successfully filtered. The only waves which
can cause a problem are waves with k& € [-2" Mk, .., 2"Mk,..]. Supposing
the initial condition to be localized on [—L/2, L/2], these waves can travel no
farther in space than L/2 + 27 Mk, .. Thhax. Due to their low frequency, these
waves are located on the coarsest scale, which extends as far as © = 2M L.

This implies that the slow waves hit the boundary when 2 M o Tmax =
2™ . We therefore choose m so that

22MT,

kmax

Thax < (4.1)
so that the low frequency waves do not have sufficient time to reach the bound-
ary. Thus, with an unknown ki, but known (large) Tiax, the choice M >
log(TmakaaxL_l) guarantees the accuracy of the simulation. The complexity
of the algorithm is therefore

O[(Tiax/6t) log(Timax ) kmax L 108 (kmax L)] (4.2)

It should be noted that some Dirichlet-to-Neumann implementations for
the Schrodinger equation achieve time-complexity O(Tiax 10g Tmax) [16, 17, 18]
as well (for compactly supported potentials). Very roughly, where Dirichlet-
to-Neumann boundaries require storing the time-history on the boundary, we
require storing extra low frequency outgoing waves.

5 Numerical Results

In this section we present the results of numerically implementing Algorithm 1.
The algorithm was implemented in the Python programming language, using
the libraries Numarray, Matplotlib and FFTW [13]. The code is available at
http://cims.nyu.edu/ stucchio under the Gnu Public License.

5.1 The Free Schrodinger Equation

We begin by running some comparisons to solutions of the free Schrodinger
equation (namely (1.1) with V(x,t) = 0). We solve this equation taking the
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Error vs Frequency, 3 Scales
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Figure 4: A graph of error vs the velocity of an outgoing pulse. . (x,t) is the
exact solution, ¥ (x,t) the numerical one.

initial condition ¥(z,0) = (470) /2@ e=2"/20" with k =1,2,...21. With this
initial condition, the exact solution is

exp (ik(z — kt/2)) ( — o — k) ) .

e 7t = 3 ;
Vel ) TA2612(1 1 it o2)1/2 © P\ 202(1 + it o?)

(5.1)

We solve (1.1a) by means of Algorithm 1 using 3 scales. Each scale has 1024
lattice points, taking dx = 0.1 on the finest scale. The parameter € was taken to
be 1078, leading to b’ = 7.88 (as per (3.3)). The maximal resolvable frequency
on the finest scale is kK = 41.8. Outgoing waves are filtered from the n’th scale
at k = 27"13.06. The timestep is taken to be 6t = 27°.

In each simulation, Tyax is taken to be Tiax = 204.8/k, which is more than
enough time for the outgoing wave to reach x = 51.2 and return to the origin.
The quantity

E(k)= sup |lv(z,t) — we(xvt)HL2[725,6,25.6] (5.2)
t€[0,Tmax]

was computed, and the result is plotted in Figure 4.

Figure 4 shows that the error remains uniformly below 1075, for a simulation
with ¢ = 4. The errors will get progressively worse with high frequencies,
however, but this can be resolved by increased the rate of sampling.

It should be noted that for & ~ 1, if we ran the simulation out to time
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Error vs Spread, 3 Scales
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Figure 5: A graph of error vs the width of an stationary pulse. . (z,t) is the
exact solution, ¥(x,t) the numerical one.

t =~ 400+, we would see errors due to these waves wrapping around the compu-
tational domain. This problem is resolved by the use of additional scales.

Another set of simulations was run, this time varying o with o = 1,...,128.
The maximal time was Tiax = 50.0 in all cases. Note that this initial condition,
when o = 25 = 64 is not even localized inside the region [—51.2,51.2], and is
therefore completely inaccessible by standard absorbing boundary techniques on
a box of size [—25.6, 25.6] since the typical wavelength of this solution is longer
than the computational domain. The results are plotted in Figure 5.

For this simulation, we could have solved the problem with ¢ = 128 by using
a grid with 1024 lattice points and dx = 0.4. The reason for using the multiscale
TDPSF algorithm is that low and high frequencies can be solved simultaneously.
Indeed, tests involving initial conditions containing both wide gaussians (with
large o) and fast ones (with k € [1, 15]) achieved accuracy of 1076 as well. This
is important for problems where low and high frequencies mix.

5.2 The Long Range Schrodinger Equation

In atomic physics one often considers potentials V(x,t) may be decaying very
slowly in z. The prototypical case is V(x) = —Z/ ||, though we restrict our-
selves to the simpler case V(z) ~ 272 near +oo:

—20
V() = —————— +20e % /7.
1+ 25.6-2 |z
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The initial data is taken to be (47T)_1/4e_5”2/2'42. The fine grid is taken to occupy
the region [—102.4, 102.4] with the first filter occupying the region [—102.4, —51.2]U
[61.2,102.4]. The simulation was run with 2, 3 and 4 scales up to a time ¢ = 1500.
To generate an “exact” solution to compare to, the same simulation was run us-
ing the standard FFT on the large region [—52428.8, 52428.8] (requiring 524288
lattice points). The results are plotted in Figure 6.

To give a picture of the dynamics of the solution, ¥ (z,t) (for various values
of t) and V(z) are plotted in Figure 7. The parameters are dz = 0.1, §t = 276
and 6 = 1075, On the finest scale, gaussians with |bkg| > 9.1 are filtered,
while others are left on the coarser scales. As can be seen from Figure 7, the
solution is rough on the interval [—50,50], and high frequencies are present.
If fine sampling were not used, aliasing errors would occur. The waves which
escape the potential have very low velocity (v &~ 2) when they reach = 50, too
slow to filter by normal methods.

As can be seen from Figure 6, more scales allow the simulation to run for a
longer time. The times at which the simulations begin to fail are slightly before
t = 200 (with 2 scales), t = 400 (with 3 scales) and ¢ = 800 (with 4 scales). This
is in rough agreement with (2.13) and the discussion in Section 2.2, although
the agreement is not exact due to the presence of the potential ((2.14) is valid
as written only when V(z) = 0). The two-scale error occurs more quickly than
would be expected since waves move rapidly at the bottom of the potential (by
direct analogy to a classical particle).

6 Conclusion

In this work we have presented an algorithm for approximating the solution of
time-dependent dispersive wave equations on RY by domain truncation. All
other methods we are aware of attempt to solve the problem on a rectangular
region of phase space, which is inaccurate for waves with large wavelengths.
We argue that a hyperbolic region {(x,k) : |k| < C/{(z)} in phase space is
the correct region to consider, and provide a spectrally accurate algorithm for
approximating differential operators on this region.

Additionally, we extend the Time Dependent Phase Space Filter algorithm
[24] to accurately filter outgoing waves regardless of frequency. The computa-
tional complexity is proportional to log(k;iln) rather than k;uln unlike the PML
or absorbing potentials.

It should be noted for compactly supported potentials in up to two space
dimensions, Dirichlet-to-Neumann boundaries do obtain [16, 17, 18] similar
O(Tmax 10g Tinax) complexity (recall Eq. (4.2)). We are aware of no compa-
rable results for long range potentials, however.
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Errors vs Time, multiple scales
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Figure 6: A graph of error (relative error, measured in L?) vs time for a test
involving a long range potential. As predicted in section 4.1, the time that the
simulation remains accurate increases with the number of scales.
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Figure 7: Plots of |1)(z,t)|* for various times, as well as V (z). For t > 40, the
motion remains confined to the bottom of the potential well.
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6.1 Nonlocal Wave Operators and Other Spectral Prob-
lems

The method described here can be applied to other equations, including those for
which the wave operator is nonlocal. The wave operator w(k) = \/k? + p2 — 1 is
an example take from relativistic quantum mechanics (with ¢ > 0) and quantum
field theory (with g = 0). Since /—A + u? — p is nonlocal, neither finite differ-
ences nor finite elements can be used to solve such equations. There is nothing
precluding the use of the MTDPSF for these purposes, and preliminary numeri-
cal tests suggest Algorithm 1 works for propagation when w(k) = \/k2 + p? — p.

Additionally, the techniques of Section 2 can be used for other spectral prob-
lems. For instance, we have solved the Poisson equation on R using Algorithm
5 with S(k) = —A~! = k? (using the quadrature rule from [7] to deal with the
singularity at k = 0) as well as the equation v/—Au = f. While a new Poisson
solver is unremarkable, it is notable that extension to non-local equations is so
simple; usually clever tricks are required [14].

6.2 The Missing High Frequencies

The Multiscale TDPSF algorithm approximates t(z,t) only on the interior of
By. On the interior of B,,, the numerical solution approximates P,,%(x,t). This
means that on the vast majority of the computational domain, the information
that the algorithm yields is incomplete.

In the broader sense, however, we believe that the TDPSF provides all the
relevant information for the problem. The philosophical assumption that under-
lies open boundaries is the assumption that outside a fixed region of space, the
behavior of the solution is free and uninteresting. However, as discussed earlier,
this assumption is conceptually flawed with regard to low frequencies. Low fre-
quencies interact over a proportional to their wavelength, which is potentially
much greater than the computational box (see Figure 2).

For this reason, we argue that the MTDPSF algorithm is providing the
right information, while all other algorithms are conceptually flawed when low
frequencies are present.

6.3 Future Directions

When the MTDPSF removes waves from the computational grid, they are re-
moved because they are outgoing and moving nearly freely. In some applications,
knowledge of their motion after they leave the domain may still be desired.
This can be rectified at low cost, however, and we intend to investigate this
in future works. In the high frequency limit, solutions to (1.1) have simple
behavior. A WKB expansion in the time-variable yields a sequence of transport
equations which can be safely truncated for frequencies which are high relative
to the size of the potential (this corresponds to the absence of turning points).
By the time the TDPSF has removed high frequency waves, they have moved
into the WKB regime. This means that if further information concerning their
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propagation is desired, it can be obtained cheaply by using WKB and then
solving a transport equation. Thus, we believe the MTDPSF algorithm can
form a building block for solving (1.1) on extremely large regions of space.

A Proof of Correctness

In this section our ultimate goal is to prove the correctness of Algorithm 5.

We first prove the accuracy of Algorithm 2 in A.1. We then use the results
there to prove the accuracy of Algorithm 4.

Our main tool is a result describing the accuracy of computing a differential
operator by means of a Fourier transform on a finite box. Essentially, the result
states that if we restrict a function to a finite box —[L, L], then the error in
approximating S(iV)¢(x) is the mass of S(iV)¢(x) located outside [—L, L]V.
In addition, if we apply a frequency cutoff (such as the one caused by sampling),
then there is an additional error corresponding to the mass of S(iV)¢(z) which
is cut off.

Theorem A.1 Let S(iV)p(Z) satisfy the hypothesis of the Poisson summation
formula, that is |S(iV)p(z)| < C{z)N*+e and ‘S(zﬁ)cﬁ(k) < CUINTE. Let S(k),

Sb(E) be continuous bounded Fourier multiplication operators which are equal

for k € B (where B is some closed set).
Then:

S(iV)e(@) — > LS, (nk /L) p(nk /L)
/;;EB Hs(B)
< ISGV) (@ + 2L7) | o p.119y0) + H@(E)HHS(BC) sup, S(F) — Sy(F)

(A.1)

Remark A.2 A result which is similar to this one appeared in [20], where it is
used to show that systems on a large enough box can exhibit transient radiative
behavior (over short times) in the same way that systems on RY can.

Proof. The Poisson summation formula states that:

N f@+n2L)= Y ¢ (nk/L) (A.2)

nezd kezd

We let f(k) = S(k)@(k). Then, by rearranging (A.2), we find:

S(IV)p(@) — Y e FF/LS(nk/L)p(nk/L) = — > S(iV)e(& + 2Lii) (A.3)

kezN aezN
720
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Since S(k) and Sy (k) are equal on B, we can add and subtract
> ijnezn €™ (Sy (kL) = S(wk/L))@(wk/L) to both sides of (A.3), to ob-
tain:

(A.3)
== > S(V)p(#+2Li)+ > ™R F/L (S (nk /L) — S(nk/L))p(nk/L)
rezN nk/LeZN
i£0

= Y (S,(iV) — S(iV))p(T + 2L77)  (A.4)

nezN

where the last line follows by applying (A.2). We now take norms and apply
the triangle inequality. We find that:

> 1IS6EV)e(E + 2L70)| s = 1SV)o(Z + 2LA) || g (- 1,1)v)e)
aezN
)

and that:

Y I(S6(iV) = S(iV))p( + 2Li) | 7y = 1(S6(iV) = S(EV))p(& + 2Lii) | .
neZN
(k)

<| sup |S(F) — 5y ()

HS(BC) EGBC

We put everything together to obtain the result we seek. ]

Using this result, we will show that appropriate differential operators can
be reasonably calculated. The main assumption which must be satisfied is that
S(iV) can not move Py, (k)xm(z)f(x) outside B,,. If S(iV) is a local operator,
this property is immediately satisfied.

As a warm-up, we prove the accuracy of Algorithm 3.

Theorem A.3 Let f(x) be a function such that:

— 2
/ ot )]k < @ 1512 (4.5)
[k[>2=m =1 kmax
Then:
12 @) = £@)1am, .y < (+80) 1o (4.6)

Recall 6, is a desired error bound, and xyj depends on it (c.f. (2.1)).

Proof. Apply Theorem A.1 with S(iV) = 1 to the box By,,—1. In this case,
note that Sy(k) =1 for |k| < 27 ™kmax, and 0 otherwise. This shows that:

1S(k)Xm—1f — Sb(k)melf”m(Bm,l) <e ||f||L2
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The result of this is a function supported on [—27™ ka0, 27 Tk, Af
ter padding 27" Ykpax < k| < 27™kpax with zeros, the result is a function
supported on [—27"kpax, 27 ™ kmax]. Inverse Fourier transforming yields a func-
tion g for which |lg — Xm—1fllp2(p,, ,) < € By the definition of xp,—1 (provided
(2.1c) is satisfied), we find that |xm—1 — 1| < d; for z € B,,. Thus:

(i Sb(k)melf”m(Bm)
<\ f = SE)xm-1fllr2,,) + 1SE)Xm-1f = So(k)xm-1f12(B,)
<A =Xm-1)f 2,1y +Ellfll: < (G0 +€) [ f]] 2

This is what we wanted to show. O

A.1 Correctness of Algorithm 2

In this section it is our goal to show that Algorithm 2 correctly approximates
the list of functions [f (k), fi (k). ., fi;(k), f2;(k)]. Recall the definition of
Xk and Py and o from (2.1).

Lemma A.4 Suppose that Hf(k:)‘

(e ] < 0 || f(x)||2- Then the

function (1 — Po)xof = f¥ can be accurately approzimated on the box [—L, L]
with mazximal frequency kmax:

8kmax
V2ro

Here, P(‘)i is the operator Py restricted to the box [—L, L], with a frequency cutoff
at kmax-

4= s = = O oy < (24 S22 @l a)

Proof. By the aliasing theorem, for &k < kp.x, the discrete version of Py
agrees with the continuous version of Py, whereas for k > kyax, they differ by
2. Theorem A.1 implies therefore that:

(1= Po)xf—(1— Po)deHLz([,L)L])
< Ixf = xfllp2qep,ny) + | Poxf — POdeHLz([_L,L])
< 0+ 1Pox Sl 2oz, njey + 2 IXF N L2 (= ke Buan]© i)
S NPoxfllpzor,pyey + 200 [f (@) (AB)

The last inequality follows by assumption. Treating the first term requires
somewhat more work.
The operator Py can be written (in the z-domain) as a convolution,

2
Py = Te_w2/022kmax sinc(kmaxI) *
aTm
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where o satisfies (2.1c). Thus, we need to bound:

/ dx
[_L>L]C

< 427~ to2k2 / dzr
[

max
—L,L]¢

2

2 N2 -
/ dz’ [71/206_(1_1 7 D hnax sinc(kmax(x — x/))} xo(z") f(2")

1

Lo

J R i RUCONED

< A2 l5— 2kr2nax /19€/X0(€U/)2 |f(x')|2 / dz ‘e—(w—w')2/02
[_L>L]C

2 N2, 212
’ d } —(z—a")* /o
xo(z") [/[—L,L]C xmrl/Q e

The second line follows from the first by noting that |sinc(z)] < 1 for z real.
The function inside the L norm can be explicitly calculated:

< Ak |1 (2) 72 (A.9)

m [erf(c™ ! (BL/4+2")) + erf(o™ " (2 — 3L/4))]

(erfc(21/2a*1(L — ) + erfe(2/207 (2 + L)))

The quantity inside the square brackets is 2x¢(z), and is therefore bounded by
26y for o/ ¢ [-5L/6,5L/6]. For ' € [-5L/6,5L/6], the quantity inside the
erfc function is at least as large as /2L /60 < L/3c; this implies (if o, L, kmax
are chosen according to (2.1c)) that the quantity inside the round brackets is
bounded by 24;. Thus:

8k2

(A.9) <& \/EX 1f ()17 (A.10)
Substituting this bound on (A.9) into (A.8) yields the result we seek. O

Remark A.5 We believe the factor of knyax present in (A.7) could probably be
removed by a more careful analysis. However, the cost of our laziness will only
be a logarithmic factor at the end of the day.

Proposition A.6 We have the bound:

_ _ 16k max
Ifm@) — fa @) < & (2m+ — )|f< Mo (ALD)

Proof. Suppose that || f,, (z) — f%(z) < E,,. Then simply note that:

I

s =]

11 = Xm (2) (1 = Pra)xtm ()] f2 () = [1 = xm () (1 —Pd)xm(iv)]f+’d @) .-

< (1 = xm (@) (X = Pr)xm ()] = [1 = Xom (2 )(1—Pd)xm( ) fo (@) 1
|11 = X (2) (1 = Po)xm (@) (fi (@) = frm(@)]| o (A12)
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Since Xm (2)(1 — PL)x.m(z) is a self-adjoint, positive operator bounded by 1, we
find that:

Thus:

8- 2imilkmax — —
(a12) <0y (24 S )l 4 ) - )l

8- 2imilkmax
5 (2+ —) 1F@)la + B

V2m2mtls
By summing over the E,,, (and summing the geometric series 2™ from m =
0...00 to avoid messy dependence on m), we obtain the result we seek. O

Proposition A.7 We have the bound:

16kmax
1F@) = 5@, < 6 (2m+ M )||f< Mo (A13)

Proof. A simple calculation, entirely similar to the previous

[~ ], =
= [[xm (@)1 = Prn)xm () = Xom (@) (1 = P xm (%) fr]| 2
<D (@) (1 = Pt () = Xom (@) (1 = Pe)xm ()] Fiz | 2

+ {[xm (2) (1 = P& )xm (= )(f;’d(:v)—fmw DI

8.27m 1kmax
<4, (2+ —) 1F @)l + Enm

\/%2771-1-10
< (224 5 )
V2w
with F,, given as in the proof of Proposition A.6. O

We have now shown that the effect of discretization on Algorithm 2 is min-
imal, and Theorem 2.6 is proven.

A.2 Correctness of Algorithm 4: Proof of (2.12c)
We prove here the accuracy of Algorithm 4.

Proposition A.8 (Algorithm 4, Step 2) Let b} = S(k)f,; and let b}
be the discrete approzimation to hj,. Define hy, similarly. Assume also that
|S(k)| < 1. Then the following error bound holds:

16kmax
\/_

Note that this result computes the error associated to Algorithm 4 up step 2.

I — h ), < 6 (2m+ ) @l 817 @) (A1)
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Proof. Observe that (with S%(k) the discrete approximation to S(k)):

I, = 1l e = IS G L% = SRS 2
< [SE)UE = F D e + 1S R) = SURNLE] 2 (A1)

Proposition A.7 allows us to bound the first term in the second line of (A.15).
The second term is bounded by applying Theorem A.1l, and noting that As-
sumption 2 bounds the mass localized outside B,,. Thus, we have:

16Kmax
\/_

This is what we wanted to show. O

(A15) < 4, (2m+ ) 1@ e + 65 £ @)l

Step 3 of Algorithm 4 is exact. Since g () is already band-limited by
by discretization, spectral interpolation is exact. This implies immediately the
following result:

l92.@) = g @) 125, < Z o (20 252 )

+ Rl @lge + | S0 far = SE @)

<6, (2M(M )+ (M — m) 15’“_"1) 1@ e

+02(M —m) | f(@)] g2 + 2 fa(@)]] - (A16)

To simplify, we assume that m = 0 (maximizing the right of (A.16)), ob-
taining:

(A16) < 5, (2M2 +Mlj’€_m“) 1@

+ 6 M | f(@) 2 + 2| frr(@)] . (ALT)

The term here which is not controlled by a factor of d; > is Hfl\_/l (x)HL2 This
term corresponds to waves on the coarsest scale, and can be thought of roughly
as Py f(x). The reason is as follows. By Assumption 1, Xy (2) P, (k) xm (2) f(2) ~
P, f(x). This means that each time we subtract x.,(2)(1 — P (x))xm(z), we
are approximating Py, (x); the remainder after this is done M times consists
solely of low frequencies.

Proposition A.9 We have the following bound:

15kmax
= Pt < (m+2) (34 20 ) 511, (A18)
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We will prove this in Appendix B.1 (the proof is straightforward but long).
The basic idea is that high frequencies of f(z) are localized where ., (x) ~ 1,
so the effect of x.,,(z) is negligible.

This immediately leads to the following result:

Proposition A.10 We have the bounds:

2
<6, (3m +15m

T As| < s 75kmax> Il (Ad9)
k=0 L2

fon = H Py f

L2

< 81 (3m? + 15m + 150kmax + 12) || fll 2 (A.19D)

Proof. First, note that:

Po...PLPof = Poy... PU(Pof — )+ Pr... PLfs
=Pi(Pof—fy)+Pn (Plfo —f1)+Pm.. . Pafy

Z HPk (Pofoor—fi)| +fm
=j

Bringing f, to the left, taking norms and using Proposition A.9 (as well as the
fact that || Pyl (72 72y < 1, and simple geometric series bounds®) shows:

[P PPof = Fonll o DN T P | Pty = £2)
—

7=0 L2
U 15k max
<36+ (3+ 252 1 11,
3mm+1)+12(m+1) = 15kmax(j + 2)
< 6 5 —I—Z# Hf||L2

=0
2
<5 (3m +15m+12

: + 15kmax + 60kmax) £z

(3m2 + 15m
= 51 _—

L 6 T ) 1, (220

6Namely the fact that > 277 <1/(1 —1/2) and also Z;-n:OJQ’j <1/(1-1/2)2.
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This is (A.19a). Finally, note that:

b= H Pyf

an_@—l Jm — ( .PIPyf = Py ... PiPyf)| s
< || - m,1...Plpof||L2+H—fm+Pm...PlPOfHL2 (A.21)

Using (A.20) to bound (A.21) yields (A.19b). O
We now add and subtract [}, Px f inside the last norm of (A.17), yielding:

(A17) < 5, (2M2 +Mlj’f_m“) 1@

+ 0o M || f(x)|| 12 + 2 +2

L2
We apply Proposition A.10, in particular (A.19a) with m = M to (A.22). We

also observe that HZ;O Py is a product of commuting, positive operators, and
therefore |1}, Pef|l < || Pafl||. This yields:

ﬁ Pfl (A22)

k=0

fM Hpkf

L2

(A.22) < 6, (2M2 M ﬁ) £ (@)l 2 + 820 [ F@)l] 2 +

+ 61 (3M? + 15M + 12 + 150kmax) || fll 2 + 2| Pr fll 2 (A.23)
We now simplify (A.23) and formalize it as Proposition A.11.

Proposition A.11 (Algorithm 4, Step 3) We have the following error
bound:

97 (@) = gm (@)|| 12,
16kmax

V2o
+ M| f(2) gz +2([Pafll (A24)

<& (5M2 + [15 + ] M +12+ 150kmax>

In particular, setting m =0 in (A.24) recovers (2.12c).

A.3 Correctness of Algorithm 4: Proof of (2.12b)

We have now controlled the discretization errors associated to the calculation of
g2 (x), and Theorem 2.7 is half proved. The only thing remaining is to estimate
the difference between g} (x) and S(i9,) f(x) on B,,, when computed using the
exact operators.
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First, observe that we can write:

f@)=0-P)f+Rf=0-P)f+(1-P)Rf+PPf
=1-PR)f+ (1 — Pl)Pof + (1 — Pg)Plpof + P2P1P0f

M m—1
=Q1-PR)f+ Z(l_Pm) (H Pkf) +HPkf (A.25)
m=1 k=0
Similarly, we can write:
M
go() = [Z S(k)f4 | + S(k)f3y (A.26)
m=0

go(z). We will first estimate how

We wish to compute a bound on S( )f(x
( mLlp, f)} . Using (A.19b)

close Em o fihisto (1—Py)f+ [
term by term, we find:

—(1-PR)f+

M m—1
> (1-Py) <H Pkf>
k=0

m=1

L2

< " 61 (3m2 + 15m + 150kmax + 12) ||| .2

IA iME

81 (M3 +9M? + (20 + 150kmax) M
+ 150kmax + 12kmax + 12(M + 1)) HfHL2 (A27)

Combining this with (A.25) and (A.26), and using the fact that S(k) is
unitary shows that:

[S(k) f(z) — go(@)l 2
M m—1 M

(1=P)f+ Y (1-Py) (H Pkf> - >t
m= k=0

m=0

L2

L2
< 81 (M3 4+ 9M? + (20 + 150kmax) M + 150kmax + 12kmax + 12(M + 1)) || £l 12
+ ||PMfHL2 + ||S(k)fA7["L2 (A-28)

1

M

11 Pef = Stk) fu
k=0

Using (A.19a) again, adding and subtracting H%:o P, f inside the last norm
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of (A.28), we obtain the bound:
(A.28) < 01 (M3 +9M?+(204150kmax) M +150kmax+12kmax+12(M+1)) || £|l 1
3M2 +15M M
Y I Ps
k=0 L2

2
< 81 (MP + 9M? + (20 + 150k max) M + 150kmax + 12kmax + 12(M + 1)) || f]| 12

3M2+15M
+2||Prfll 2 + 01 (f +6+ 75kmax> I £1l 2

<81 (M3 4+ 10M? + (55/2 + kmax) M + 225kmax + 18) || £l 12 + 2 || Pas £ 12
(A.29)

+ | Parfllp> + 01 ( +6+ 75kmax> £l +

Thus, we have proved (2.12b) as well.

B Technical Points

B.1 Proof of Proposition A.9

We are now almost ready to prove Proposition A.9. We first state a Lemma
used in the proof.

Lemma B.1 Provided (2.1c) holds, and m < j are integers, we have the fol-
lowing bound:

1T = Pj(k)) = x5 (@) (1 = P (k)x; ()] Xom (@) P (K)Xom (€) | £ 1.2, .2

15I€max
< (1+ 1% )51 (B.1)

The idea behind Lemma B.1 (proved shortly) is that [(1 — P;(k)) — x;(z)(1 — P;(k))x;(z)]
is “almost” supported on Bjc, while X (%) P (k) Xxm () is supported on B,,.
Since m < j, B, C Bj and so By, N Bjc is empty. Of course, this is only
approximate., so it must be quantified.
Proof of Proposition A.9. Note that f, = [1=xm(2)(1=Pp (k) Xm ()] frni1-
We wish to show that (A.19a) holds. Begin by writing:

fn = P fe1 = [1 = xm(2)(1 _Pm(k))xm( Nm-1 = Pnfra
= [1 = Po(k) = Xm(2)(1 = P (k)X (2)] 111
= [1=Po (k) =Xm (@) (1= P (k) xXm ()] (1=Xm -1 () A= P 1. (k) Xm—-1(2)) fr 2
= [1 = Pr(k) = X (@) (1 = P (k) xm ()] f1r0 -2
— [ = P(k) = xm(z )( = P (k)X (@) Xm—1(2)* fr_s
—1(x

+ [1 = Pu(k) = X (@) (1 = Py (k) X ()] Xim—1(2) Pr—1. (k) Xm—1(2) 12
(B.2)
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Define ry,—;(z) by:

T'm—j = —[1 = Pn(k) = xm(2)(1 — an(k))xrn(517)]mej(33)2 7;_]‘_1
+ 1 = Pp(k) = xm(2)(1 - Pm(k))Xm(x)]Xm—j (iU)Pm—j (k) Xm—j (x)fr;—j—l

If we then expand f,,_,, and repeat ad-nauseum, (B.2) becomes:

(B.2) =[1 = P (k) = xm(2)(1 = P (k) X (2)] frry— + Tim—1
= [1=P (k) =Xm () (1= P (k) Xm (@) (1= Xm—2(2) (1= Prn—2(k) ) Xm—2(2)) fr, 3

+ rm—1+Tm-2

= 1= Pu(0) = X (@) (1 = PalB))xm @)1 @) + s

The term f(x) surfaced since fy (z) = (1 — xo(x)Po(k)xo(z))f(x). Assume for
the moment (it will be proved shortly) that:

[rim—s (@)l g2 < (3 + (15Kmax/4)27™) 81 [|f]] 2 - (B.4)
Then:
(B3l < N1 = Pon(k) = xm (2)(1 = P (k) xm ()] f ()] .- +Z 1rm—jll L2
<61l + 1) (34 15’“‘;“) 511,
<m+2) (34 22 )61l (B
The term ||[[1 — Py (k) — Xm(2)(1 — Py (k) xm (2)] f(2)]| .2 was bounded merely

by applying Assumption 1. Thus (A.18) is proved, pending a proof of (B.4).
Boundedness of r,_;: Proof of (B.4)
We wish to compute a bound on:

T'm—j = —[1 = Pp(k) = xm(z)(1 — Pm(k))Xm(x)]Xm—j(x)2 7;—]‘—1
+[1 = Pr(k) = Xm(z)(1 — Pm(k))Xm(x)]Xm—j (x)Pm—j (k)Xm—j (fv)f;ﬂ-fl

By Lemma B.1, we can bound the last term on the right of (B.2) by

15k max _ 15k max
(1 e s sl < (1 22 g

The second to last term is bounded as follows. The function x,,—;(z)?f,. _ -1
has L2-norm smaller than 67 || f|| ;. outside D = [-2™~J5L/6,2™ I5L /6], since
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Xm (2)? < 67 there. Inside the region [-2™4L/6,2™4L /6], we can write X, (7) =
1+ h(x), where |h(z)| < 67. Since D C [-2™4L/6,2™4L/6], we need only con-
sider this region. Here, we find:
L = P (k) = X (@) (L = o (&)X (@) x0—3 (2)° 1 [ 2 )
= 11 = Paalk) — (1 4+ h@) (L~ P ()L + B @) s @ s |
< [[[(@) (1 = P (k) (1 + h(@))xm—i @) fra [ 2
1+ @)~ PR s @ a,
< 2h@)l e [ (@)@~ PGkl g2 1 om—s @ sl o,
<201 (| fl e
This completes the proof. ([l

Before proving Lemma B.1, we require one additional result to be stated.

Lemma B.2 Let g(z) = (2//a2i0)e /@ 9* et m < j be integers. Then:

11 = () 9(@) 5 Xm () g2y < 56 (5.6)

Proof of Lemma B.2. Note that:
(I=xj(x)) < Y9iarse,—2ians6)c () + 011 2iar6,—2iars6)(z) (B.7a)
Xm(®) < 1_omsp/6,—2ms55/6) + 011|—2msL/6,—2m5L/6)C (B.7b)

Note that the distance between [~274L /6, —274L /6]¢ and [-2™5L /6, —2™5L /6]
is at least 27(4L/6 —2m~I5L/6) > 2/ (4L/6 —5L/12) = 27 L /4 (since m —j < 1).

We now break g(z) = g1(z) + g2(x), with g1(x) = g() for |z| < 2/L/8 and
zero otherwise, and g(z) = g(z) — g1(x). Simple integration shows that:

¥
lga(2) 12 < 2erfe (%/8> < 2erfo(L/80) < 26, (B.8)
ag

This follows since o > L/8erfc™*(8;) and erfe(z) is monotonically decreasing in
z. By Young’s inequality, this implies that [|g2(2)*| ;2 r2) < 261.

Now, letting f(z) = (1 — x;(2))g(x) * Xm(z)h(z) (for some h(z) € L?), we
observe that:

()] = /(1 = X;(@)g(@ = 2') % X () (2" da’
= [@= @) lonle = &) + g1(o = )] 50N’ (B
Substituting the bounds (B.7) into (B.9), we find:

(B.9) < [11—2iar/6,—2141/6)c () + 0112541 6,~2141/6] (2)]
X (go(z) * +g1(x)*)
X [1[72m5L/6,72m5L/6] (z) + 611[72m5L/6,72m5L/6]C(x)} h(x) (B.10)
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Note that (B.9) is a product of the form (A; + §1B1)(A2 + 01B2)(A3 + 61 Bs).
When the sum is expanded, there will be 8 terms, only one of which does not
have a factor of §; in it. This term is

1[—21'4L/6,—2J'4L/6]C(x) [90(55) *x L[_amsL/6,—2m5L /6] (:c)h(:v)]

But since the support of go(z) has width 27 L/4, which is the distance between
the support of the first characteristic function and the second, this term must
be zero.

There are another three terms of order ¢; (one of which is actually 207, the
term coming from g;(z)%), and 4 more terms of order §2. Provided §; < 1/4,
we find that the sum of these terms is 56;. This is what we wanted to show. [

Proof of Lemma B.1. A calculation. First:

[(1 = P(R)) = x; (@) (1 = P (F)x; ()] Xom () P (K) Xm ()
= (1= x5 (@) P (k)X () P () xom ()
+ x5 (@) (1 = Pj(k)) (1 = x5 () Xm (€) P (F) Xom ()

Recalling (2.1a), we observe that |(1 — x;(2))Xxm(z)| < 1. This implies that:
[ (@) (1 = P (k) (1 = x5 () Xm (%) Pon (B) X (2) | £ 1.2, 2 < O

Thus we only need to bound (1 — x;(2))P;(k)Xm (2)Pm(k)xm(x). This can be
done by examining the integral form of (1 — x;(x))P;(k)xm(z) (the operator
P, (k)Xm(z) has norm bounded by 1):

(1= X @) Py (K) X (@) 1)
B ’/ (1= s (a))e (oI T i (?ék“’ o (@~ w’>) Xom (@) (&)

gkmax — 1—1/ 2 Jo_ 2
< Y [ (1@ =P @ ! (B

The last line follows since [sinc(z)| < 1. By Lemma B.2, we find that the norm
of the integral operator is bounded by 541, thus:

3kmax
4.

(B.11) < =501 ()1l 2 (B.12)

This is what we wanted to show. O
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